
SBGC32_I2C_Drv expansion module reference manual

ver. 0.2 – 28.03.2015 – first edition

ver. 0.3 – 11.04.2015 – Add “Q&A”, “Flashing MCU” sections.

ver. 0.4 – 27.12.2017 – Add "API and examples" section

ver.0.5 – 05.09.2018 – The list of supported encoders was extended by new models; text was
updated to conform with the latest GUI and firmware versions;

© Basecamelectronics® 2018

Overview
This module is intended to work as a part of the SimpleBGC32 camera stabilizer system,
performing a motor driver function. Unlike regular scheme, where all motors and encoders
are connected to the main board and driven by the single MCU, in the modular scheme each
motor is driven by its own MCU, that lets to optimize cabling: encoder is integrated into the
PCB for each module, and motor's cable goes to it by the shortest way. See Appendix A for an
example of connection. Schematics, firmware and other resources you can find on the
product's page: https://www.basecamelectronics.com/sbgc32_i2c_drv/

This expansion module is supported only in the encoder-enabled version of the SimpleBGC32
firmware: https://www.basecamelectronics.com/encoders/

Features:
• Flexibility - This module can replace one or two motor+encoder pairs. Using it for all

three motors is possible, but not recommended because I2C transfer on 400kHz rate
will not fit into 800us cycle time. There is an option to increase I2C speed to 800kHz
for small systems.

• Low cost - Each module consists of entry-level STM32F051 series MCU, cheap magnetic
or analog encoder, a FET- or IC-based motor driver and a minimal number of other
components.

• Better cabling - a 5-wire cable is required to connect main MCU with the I2C_Drv
modules and IMU sensor, all connected in parallel.

• Compact size - MCU is available in the UFQFPN32 package, allowing ultra-compact
design and installation into small motors.

• Reliable, low power consumption - rotary encoders allow to apply advanced FOC
algorithm for driving motors

• Software compatibility - fully compatible with SimpleBGC32 software stack (including
GUI, mobile applications, Serial API, etc.)

Motor driver output circuit
Module provides 6 PWM outputs to drive 3 half-bridges at ultra-sonic frequency. 300-400ns
dead-time is inserted. It lets to use simple FET-based output circuit, or use integrated circuits
like DRV8839, DRV8313, and any other IC that encloses 3 half-bridges and all protection
circuits. Several output driver circuits are provided in the schematics, as an example.

Encoder
One of the purposes of this module is to let to integrate encoder and motor driver into single
PCB to minimize overall size of a system. For this purpose, a compact-sized magnetic encoder
will be the best choice.

© Basecamelectronics® 2018

http://www.basecamelectronics.com/sbgc32_i2c_drv/
http://www.basecamelectronics.com/encoders/

List of supported encoders with its props and cons:

Model Installation Interface Props Cons

AS5048A on-axis SPI small size, high resolution
(14bit), high update rate,
perfect integration

expensive compared
to other magnetic
ICs

AS5048B on-axis I2C small size, high resolution
(14bit), high update rate,
perfect integration

expensive;
compatible with the
48- or 64-pin MCU
only;

AMT203 on-axis
in housing

SPI shaft with pass-through hole
is possible; easy installation
on a shaft

big size; medium
update rate;
external mounting
only; expensive

MA3 (10bit,
12bit)

on-axis
in housing

PWM external mounting
only; slow update
rate; expensive

Analog ? analog low cost, good integration,
high update rate

full 360 degree
rotation is not
possible; friction
reduces a life-cycle;

AS5600 on-axis I2C low cost, good integration,
high update rate

compatible with the
48- or 64-pin MCU
only;

AS5050A on-axis SPI low cost, good integration medium update
rate; low resolution

AS5055A on-axis SPI low cost, good integration medium update rate

RLS "Orbis" off-axis
PCB w/out
housing

SPI pass-through hole expensive

MA730 on-axis SPI low cost; high resolution
14bit; ultra-compact size;
high update rate;

AM4096 on-axis I2C low noise, true 12bit big size of IC
package; compatible
with the 48- or 64-
pin MCU only;

Notes:

© Basecamelectronics® 2018

1. Update rate is not crucial parameter for general application of the SimpleBGC system, so all types of
supported encoders suit well.

2. With the on-axis encoder, a special effort is required when designing a system that should support an
infinite 360-degrees rotation of a motor. When using sliprings, pay special attention to normal work of
the I2C bus. It may be required to use I2C signal extenders / amplifiers.

More information about using and configuring encoders in the SimpleBGC32 system you can
find in this document: https://www.basecamelectronics.com/files/SimpleBGC_32bit_Encoders.pdf

Notes on schematics
We provide a reference schematics, which contains a circuits for some types of supported
encoders, several examples of output motor driver circuits and several packages of MCU (you
can chose from LQFP32, UFQFPN32, LQFP48, UFQFPN48, UFBGA64 case, 32k or more FLASH).

There are 2 options for flashing MCU: via SWD port and ST-Link utility, or via UART port and
integrated bootloader. For the second option, additional components are required, as shown
on the schematics.

For the I2C encoders, 32-pin MCU case is not applicable. Use 48- or 64-pin case.

Flashing MCU

To upload firmware, you can use UART port and Flash Loader Demonstrator tool from ST
company, or any other flashing tool that can communicate with standard STM32 bootloader,
including our GUI "Upgrade" tab in the manual mode. Second option is SWD port and ST-Link
tool and utility (can be bought separately or found as a part of some "STM32Discovery"
boards). Both interfaces are shown in the schematics, choose one that you like.

Configuring SimpleBGC 32bit controller to work with the expansion modules
1. Open SimpleBGC GUI , go to “Advanced” tab, “Motor outputs” group. Chose
“SBGC32_I2C_drv#1..4” module in the drop-down list for any axis you want. Number 1..4 is
configured by setting ADDR0, ADDR1 jumpers on the module: solder jumper to connect
address pin to VDD for high level, or leave it floating to set low level (pin is pulled-down
internally).

Role ADDR0 ADDR1

SBGC32_I2C_drv#1 0 (low) 0 (low)

SBGC32_I2C_drv#2 1 (high) 0 (low)

SBGC32_I2C_drv#3 0 (low) 1 (high)

SBGC32_I2C_drv#4 1 (high) 1 (high)

© Basecamelectronics® 2018

https://www.basecamelectronics.com/files/SimpleBGC_32bit_Encoders.pdf

2. In the “Encoders” tab, chose the same module for corresponding axis. Select a type of
encoder, installed on the module, in the drop-down list below.

3. It's better to increase the I2C speed by selecting the “I2C high speed” option in the
“Hardware” tab, to minimize delays caused by the I2C data transfer. But it may be required to
decrease overall resistance of pullups on SDA, SCL lines to 1..2k, otherwise I2C errors may
come. Please pay attention to this fact when designing your own system.

4. Second (frame) IMU is not required for the encoder-enabled gimbal design and may be
omitted.

All other settings for motor output and encoder are remain the same as in regular system. You
can find further instructions in the "SBGC32 User Manual" and the "Encoders" manual,
available to download from our web-site:

https://www.basecamelectronics.com/files/v3/SimpleBGC_32bit_manual_2_6x_eng.pdf

https://www.basecamelectronics.com/files/SimpleBGC_32bit_Encoders.pdf

Licensing
Binary firmware and schematics for SBGC32_I2C_Drv module are provided free of charge,
limited to use only as a part of the SimpleBGC 32bit controller-based system. Source code is
a property of Basecamelectronics and is not published. It is available for our partners upon a
request.

Q&A
Q: How does it identify the motor pitch and the motor roll?

A: There are 2 ADDR pins to chose I2C slave device address from four options. Set any unique
address for each module, that defines them as “module 1..4”, than choose corresponding
module in the GUI. More information can be found in the section "Configuring SimpleBGC
32bit controller to work with the expansion modules".

Q: I cannot find a circuit diagram of the main controller to be used in a modular scheme. What can

© Basecamelectronics® 2018

https://www.basecamelectronics.com/files/v3/SimpleBGC_32bit_manual_2_6x_eng.pdf
https://www.basecamelectronics.com/files/SimpleBGC_32bit_Encoders.pdf

I refer to in order to find it?

A: The main controller is based on the regular 32bit board reference schematics. You can
remove unused motor drivers and connectors to optimize its size, and add other service
electronics like LiPo charger, bluetooth module, smart power switch, etc., that are not present
in the original SBGC32 reference design. All functions and interfaces of the main controller
are available as before, and you can still use main controller to drive any motor directly, or
drive it via I2C_Drv.

Q: Is it possible to apply DRV8313 instead of the original motor driver, shown in the schematics? If
it is not possible, how can we get increased motor power?

A: Yes, you can apply DRV8313 or any other suitable motor driver that has 3 independent full-
bridges with the 3x PWM inputs and ENABLE input, compatible with the 3V-level logic.

Q: I want to use I2C_Drv with the encoder that is not present in the list. Is it possible?

A: You can send a request to the Basecamelectronics team for adding a support of a new
model of encoder in the I2C_Drv firmware. Note that it should have I2C or SPI-compatible
interface, and should be absolute. Incremental encoders ate not supported! Also consider
using the "CAN Driver" module, that acts similar to the I2C_Drv module, but has more
advanced motor control algorithms and provides more connection options
https://www.basecamelectronics.com/can_driver/

© Basecamelectronics® 2018

https://www.basecamelectronics.com/can_driver/

Appendix A: SBGC32_I2C_Drv connection diagram

© Basecamelectronics® 2015

ENC

MCU
F0

DRV

ENC

DRV

ENC

DRV

USB RC (opt.)

Bluetooth
(optional)

+VBAT
+5v
SDA
SCL
GND

I2C

+VBAT
+5v
SDA
SCL
GND

I2C

IMU
+5v
SDA
SCL
GND

I2C

5V 3.3v

3.3v3.3v

GoPro,
Smartphone

Handle

Battery
7.4..12V

Menu btn

Joystick
(optional)

Power
switchSBGC32_i2c_drv

expansion module
SBGC32_i2c_drv
expansion module

SBGC32
Main controller

(modification with single
output driver)

MOTOR
PITCH

MOTOR
ROLL

MOTOR
YAW

Li-Ion
driver

MCU
F0

MCU
F3

Appendix B: I2C_Drv API and examples
The API consists of the definition of I2C registers. The master controller reads and writes them
to operate the module.

I2C_Drv.h
/*
 This is a part of SimpleBGC project source code
 Copyright (c) 2015 Aleksei Moskalenko

 SBGC32_i2c_drv - expansion board with brushless driver, encoder and I2C interface
*/
#ifndef I2C_DRV_H_
#define I2C_DRV_H_

// Device address (7bit)
#define I2C_DRV_START_ADDR 0x19

// Device identifier. Check it when discovering
#define I2C_DRV_DEVICE_ID 0x14

/************** Register map **************************/
/* Note that though registers are 16bit, lower byte can be read/written by 8bit
transactions */
// Encoder
#define I2C_DRV_REG_ENC_RAW_ANGLE 40
#define I2C_DRV_REG_ENC_ANGLE 41
#define I2C_DRV_REG_ENC_INFO 6
#define I2C_DRV_REG_ENC_ERR_CNTR 42

// Motor driver
#define I2C_DRV_REG_SET_POWER_ANGLE 0
#define I2C_DRV_REG_SET_POWER 0
#define I2C_DRV_REG_SET_ANGLE 1
#define I2C_DRV_REG_SET_FORCE_POWER 2
#define I2C_DRV_REG_SET_ENABLE 3

// Configuration
#define I2C_DRV_REG_ENC_TYPE 4
#define I2C_DRV_REG_ENC_CONF 5
#define I2C_DRV_REG_ENC_FLD_OFFSET 7

// Device info
#define I2C_DRV_REG_DEVICE_ID 39
#define I2C_DRV_REG_FIRMWARE_VER 32
#define I2C_DRV_REG_MCU_ID 33
#define I2C_DRV_MCU_ID_SIZE 6
#define I2C_DRV_REG_I2CS_ERR_CNTR 43

// Misc. functions
#define I2C_DRV_REG_RESET_MODE 8

© Basecamelectronics® 2018

/**/

// Types of supported encoders
#define I2C_DRV_ENC_TYPE_AS5048A 1
#define I2C_DRV_ENC_TYPE_AS5048B 2
#define I2C_DRV_ENC_TYPE_AMT203 3
#define I2C_DRV_ENC_TYPE_MA3_10BIT 4
#define I2C_DRV_ENC_TYPE_MA3_12BIT 5
#define I2C_DRV_ENC_TYPE_ANALOG 6
#define I2C_DRV_ENC_TYPE_AS5600 7
#define I2C_DRV_ENC_TYPE_AS5050A 8
#define I2C_DRV_ENC_TYPE_AS5055A 9

#endif /* I2C_DRV_H_ */

Example of using I2C_Drv

uint8_t OutputI2CDrv::init(uint8_t _out_port, uint8_t _axis)
{
 addr = (I2C_DRV_START_ADDR - 3) + _out_port;
 cur_power = 0;

 // Check if I2C board is connected (wait 2 sec)
 i2c::select_line(I2C_LINE_A);
 for(uint8_t i=0; i<100; i++) {
 if(i2c::read_reg_byte(addr, I2C_DRV_REG_DEVICE_ID) == I2C_DRV_DEVICE_ID) { //
check device ID
 return 1;
 }
 }

 return 0;
}

void OutputI2CDrv::write_reg_byte(uint8_t reg, uint8_t val) {
 i2c::select_line(I2C_LINE_A);
 i2c::write_reg_byte(addr, reg, val);
}

void OutputI2CDrv::powerOn() {
 write_reg_byte(I2C_DRV_REG_SET_ENABLE, 1);
}

void OutputI2CDrv::powerOff() {
 write_reg_byte(I2C_DRV_REG_SET_ENABLE, 0);
}

void OutputI2CDrv::output16(uint16_t el_angle) {
 i2c::select_line(I2C_LINE_A);
 uint16_t buf[2] = { cur_power, el_angle };
 i2c::write_reg_buf(addr, I2C_DRV_REG_SET_POWER_ANGLE, (void*)buf, sizeof(buf));

 // TODO: We can write force power, if encoder fld.offset is calibrated
 // (not yet implemented in the I2C_DRV firmware)

© Basecamelectronics® 2018

}

// Search for the I2C_Drv-connected encoder
void Encoder::_init_i2c_drv(uint8_t type) {
 i2c.addr = (I2C_DRV_START_ADDR - ENC_TYPE_I2C_DRV1) + type;

 i2c::select_line(I2C_LINE_A);

 if(i2c::read_reg_byte(i2c.addr, I2C_DRV_REG_DEVICE_ID) == I2C_DRV_DEVICE_ID) {
 // Get firmware version, if required
 //uint16_t frw_ver;
 //i2c::read_reg_buf(addr, I2C_DRV_REG_FIRMWARE_VER, &frw_ver, 2);

 // Configure the type of internal encoder
 if(i2c::write_reg_byte(i2c.addr, I2C_DRV_REG_ENC_TYPE, cfg)) {
 // Read it back to confirm activation. Wait max. 50ms
 for(uint8_t i=0; i<50 && !encoder_type; i++) {
 Time::delay_us(1000);
 if(i2c::read_reg_byte(i2c.addr, I2C_DRV_REG_ENC_TYPE) == cfg) {
 encoder_type = type;
 // configure field calibration
 //i2c::write_reg_buf(addr, I2C_DRV_REG_ENC_FLD_OFFSET,
&(params.encoder_fld_offset[axis]), 2);

 // Configure encoder
 // bits 0..3: LPF factor
 // bit 4: I2C fast mode
 uint16_t conf = 5;
 i2c::write_reg_buf(i2c.addr, I2C_DRV_REG_ENC_CONF, &conf,
sizeof(conf));
 }
 }
 }

 }
 i2c::errors_count = 0;
}

uint16_t Encoder::_read_i2c_drv() {
 uint16_t angle;

 i2c::select_line(I2C_LINE_A);
 if (i2c::read_reg_buf(i2c.addr, I2C_DRV_REG_ENC_ANGLE, &angle, 2)) {
 read_error = 0;

 return angle;
 }

 return 0;
}

void Encoder::_request_info_i2c_drv(uint8_t info[4]) {
 // info[0] - encoder error counter
 // info[1] - I2C slave error counter
 // Sub-type AS5048A, AS5048B:

© Basecamelectronics® 2018

 // info[2] - magnitude
 // info[3] - diagnostic register

 i2c::select_line(I2C_LINE_A);
 info[0] = i2c::read_reg_byte(i2c.addr, I2C_DRV_REG_ENC_ERR_CNTR);
 info[1] = i2c::read_reg_byte(i2c.addr, I2C_DRV_REG_I2CS_ERR_CNTR);

 // Write any data to ENC_INFO reg to queue information from encoder
 if(i2c::write_reg_byte(i2c.addr, I2C_DRV_REG_ENC_INFO, 0)) {
 Time::delay_ms(50); // wait a bit to let device to read information
 i2c::read_reg_buf(i2c.addr, I2C_DRV_REG_ENC_INFO, &info[2], 2);
 }
}

© Basecamelectronics® 2018

